Investigation of Mixed Oxide Catalysts for NO Oxidation

Ayman M. Karim, Larry Pederson, Janos Szanyi, Donghai Mei, Ja Hun Kwak, Diana Tran, Charles H.F. Peden, George Muntean

> Pacific Northwest National Lab June 18, 2014

Project ID # ACE078

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Oct 2011
- Finish Sept 2014
- 36-month CRADA

Budget

- Total project funding
 - DOE: \$450k (\$150k/year)
- Matched 50/50 by GM per CRADA agreement
- Funding authorized to-date: \$450k

Barriers

- Reduce or optimize PGM usage as "critical materials" in emission control devices
- Development of lowtemperature oxidation catalysts
- Better understanding of active sites and structure requirements in catalysts
- Design and modeling of catalyst functions and structures

Partner

- General Motors
- GM's university partner in China (Tianjin University)

Motivation and relevance

- Higher efficiency engines often implies lower exhaust temperature, requiring better low-temp catalysis to meet emission regulations by inexpensive and reliable NOx emission control
 - NO to NO₂ required for NOx storage on LNT
 - NO₂ may assist passive regeneration of soot in DPF
- Pt is the most active catalyst
 - Pt commodity pricing is still high and volatile, although the rate of increase is leveling off
- Thrifting or replacement of Pt in DOC and LNT catalysts desired for:
 - supply-chain stability
 - cost reduction as an enabler to advanced aftertreatment and combustion technologies
 Pacific Northwest
 - alternative technologies for oxidation reactions

Objectives

This CRADA project aims to develop and demonstrate a substitutive option for Pt oxidation function using mixed-metal oxide structures.

- Improve the understanding of the nature and structure of active sites for mixed metal oxide catalysts intended for NO oxidation
- Study of synthetic method and composition on resulting structure and on effectiveness of NO oxidation

Partnership with GM – CRADA Gongshin Qi and Wei Li

- ▶ Based on research reported by GM (Science 327 (2010) 1624)
 - CRADA initiated for PNNL assistance leveraging surface science and catalysis capabilities
 - Analytical assessment and computational model
- Scope split, but coordinated between GM and PNNL
 - GM Catalyst formulation, aging and testing
 - PNNL Characterize structure and active sites, along with alternative synthesis processes and assessment of the effect on performance

Fig. 1. NO oxidation activities for LaCoO₃ ($^{\circ}$), La_{0.9}Sr_{0.1}CoO₃ ($^{\bullet}$), LaMnO₃ ($^{\circ}$), La_{0.9}Sr_{0.1}MnO₃ ($^{\bullet}$), and commercial DOC ($^{\bullet}$) at a gas hourly space velocity of 30,000 hour⁻¹; 400 parts per million (ppm) of NO and 8% of O₂ in a balance of N₂.

Science 327 (2010) 1624

Pacific Northwest
NATIONAL LABORATORY

Institute for INTEGRATED CATALYSIS

Proudly Operated by Battelle Since 1965

MnO_x-CeO₂ interaction (Project summary for first two years)

Previously presented

- \blacktriangleright MnO_x/CeO₂ is more active than MnO_x and CeO₂.
- $ightharpoonup MnO_x/CeO_2$ is more reducible than bulk MnO₂.
- High activity of catalysts prepared by incipient wetness suggest that Mn doping in CeO₂ is not necessary.
- FTIR showed lower NO binding energy and higher activity for NO₃⁻ decomposition on MnO_x/CeO₂.
- DFT results suggest that MnO_x(clusters)/CeO₂ is more active than MnO_x and CeO₂ in agreement with activity and IR results.

Critical questions for developing a highly active and stable MnO_x-CeO₂ NO oxidation catalyst

MnO₂ clusters/CeO₂

or

 $Mn_xCe_{(1-x)}O_2$ mixed oxide?

- Optimum oxidation state for Mn?
 - Effect of MnO_x-CeO₂ interaction on labile oxygen
- Stability
 - Effect of aging
 - Sulfur tolerance

Milestones and planned 3rd year tasks

- Compete catalytic reaction tests to understand the role of NOx storage capacity
 - Catalyst formulation, aging and sulfur tolerance by GM
 - Alternate synthesis methods
 - Characterize structure and number of active sites
 - Identified mixed metal oxide catalyst compositions and forms that show high activity and stability for NO oxidation.
- Perform detailed characterization by FTIR
 - Using isotope labeling studies, we demonstrated that the MnO_x-CeO₂ catalyst both decreased the required temperature for NO₂ formation and increased the quantity of labile oxygen needed for NO oxidation.
 - Showed that the most active sites likely consist of small MnO₂ clusters interacting strongly with CeO₂.
 - Mn doping in CeO₂ is not necessary.
- Complete study of the effects of MnO₂ cluster size on the reaction mechanism by DFT
 - DFT calculations confirmed the active sites identified by XAFS and XPS and the role of MnO_x-CeO₂ interaction in increasing the oxygen mobility.

Approach

- Prepare and evaluate both fresh and lab-aged catalyst materials to optimize the formulations for DOC and LNT applications
- Utilize catalysis expertise, state-of-the-art analytical techniques and computational analysis to investigate:
 - Surface and bulk properties of the catalyst materials with respect to changes in composition;
 - XPS, XAFS
 - Interaction between reactants and the potential active sites
 - FTIR, TPD, DFT
 - And help inform more advanced catalyst formulations

Total activity is not proportional to Mn loading

- A 3.4x increase in Mn loading results in only 2x increase in conversion in the kinetic regime.
- Activity should be normalized to the Mn sites on the surface
 - Use %Mn from XPS and BET surface area to estimate # Mn surface sites

50mg, 156 sccm (GHSV = 300,000 hr⁻¹) Gas composition: 200 ppm NO, 10% O₂, 10% water, balance N₂

Normalized activity results at 200 °C show higher intrinsic activity for lower Mn loading

	Fraction monolayer (no 3D structures)	BET surface area (m²/g)	Surface/ Bulk Mn (XPS)	Surface Mn/Ce (XPS)	Reaction rate (mol/Surface mol Mn min)
MnO _x	1	14.7	0.91	-	541
1% MnO _x /CeO ₂	0.046	136	-	-	-* (1772)**
3.4% MnO _x /CeO ₂	0.16	132	1.13	0.2	476* (592)**
14.7% MnO _x /CeO ₂	0.77	115	0.99	0.64	212* (176)**
30.7% MnO _x /CeO ₂	2.2	87	0.93	0.69	348* (240)***

14.3% MnOx/CeO₂ TEM/EDS confirm fractional MnO_x coverage.

Surface density for MnO₂ and CeO₂ is ~ 11.2 atom/nm²

- * using Mn/Ce from XPS
- ** using fractional coverage (first column)
- *** assuming full surface coverage

EXAFS results on 3.4%, 30.7% MnO_x/CeO_2 and bulk MnO_x

		Mn–O (Å)	Mn–Mn (Å)
	MnO	2.22	3.14
	Mn_2O_3	1.89	3.12
	MnO ₂	1.86	2.87
	Bulk MnO _x	1.90	3.16
	3.4% MnO _x /CeO ₂	1.84	2.80
	30.7% MnO _x /CeO ₂	1.86	2.86
DFT -	Mn ₂ O ₄ cluster/CeO ₂	1.93-2.00	2.66
	Mn ₂ O ₂ cluster/CeO ₂	1.90-2.1	2.67
	Mn doped CeO ₂	2.24-2.28	3.80 (Mn-Ce)
	MnO ₂ (110)	1.89-1.90	2.87

- ▶ Bond distances suggest Mn⁴⁺ (MnO₂) clusters/nanoparticles are formed when MnO_x is supported on CeO₂.
- Shorter Mn–O bond distance for the 3.4% MnO_x/CeO₂ suggests smaller clusters.

Higher oxidation state detected by XPS on lower Mn loading catalysts

- Lower Mn loading shows higher Mn oxidation state.
- From XAFS and XPS, Mn appears to be in close contact with CeO₂ (not in the CeO₂ lattice) and in 4+ oxidation state.

Synergy between MnO_x and CeO₂ is present even in a physical mixture

	Reaction rate x10 ⁻³ (mol/m ² /min)	Reaction rate (mol/Surface mol Mn min)	
MnO _x	10.1	541	
30% MnO _x /CeO ₂ physical mixture	24.8	1332	

Calculation assumes negligible CeO₂ activity at 200 °C

- Physical mixture of MnOx and CeO₂ shows higher activity than the addition of their individual activities.
- Results confirm that Mn doping is not necessary.

Effect of Mn doping and MnO₂ clusters on energy barriers for NO oxidation on MnO_x-CeO₂

- NO₂ desorption from the surface (creating an O vacancy) is the ratecontrolling step in NO oxidation on the CeO₂ based surfaces.
 - For the MnO₂(110) and the CeO₂(111) supported Mn₂O₄ cluster, this step becomes feasible under reaction temperature range while the barrier is too high for the pure and Mn doped CeO₂ surfaces.
 - Mn doping in CeO₂ doesn't significantly lower the barrier
 - MnO2 clusters/CeO2 no barrier (exothermic)

Critical questions for developing a highly active and stable MnO_x-CeO₂ NO oxidation catalyst

- Optimum oxidation state for Mn?
 - Effect of MnO_x-CeO₂ interaction on labile oxygen
- Stability
 - Effect of aging
 - Sulfur tolerance

NO pulses on annealed 3.4% MnO_x/CeO₂ showed reduction of NO

The reduction of NO shows:

- 1. Presence of O vacancies
- 2. Possible O scrambling between NO and the surface.

Isotopic labeling studies confirmed higher reducibility due to MnO_x-CeO₂ interaction

- ► More NO reduction is seen on the 1% MnO_x/CeO₂
 - More O vacancies
- Faster oxygen scrambling is seen on the 1% MnO_x/CeO₂
 - O is more labile

0.3

MS Signal Intensity (33 amu)/a.u

4800

Critical questions for developing a highly active and stable MnO_x-CeO₂ NO oxidation catalyst

► MnO₂ clusters/CeO₂

or

 $Mn_xCe_{(1-x)}O_2$ mixed oxide?

- Optimum oxidation state for Mn?
 - Effect of MnO_x-CeO₂ interaction on labile oxygen
- Stability
 - Effect of aging
 - Sulfur tolerance

Activity is not significantly affected by aging

Aging was performed at 700 °C in 10% H₂O/air for 1 hour

- Aging has little effect on catalyst activity
 - Catalysts with higher MnO_x loading are more affected by aging
- BET surface area measurements show 30-40% loss due to aging

Hydrothermal stability and sulfur tolerance improvement

- The incorporation of ZrO_2 into MnO_x - CeO_2 mixed oxide resulted in:
 - Increased activity
 - Improved hydrothermal stability
 - Increased sulfur tolerance
- Sulfur poisoning is not reversible, but ~70% of the conversion can be restored by a rich treatment.
 - More detailed study is currently underway to optimize desulfation treatment.

Response to previous year reviewer comments

- Durability of Mn catalysts to high temperature and sulfur
 - Addressed by aging studies at GM and PNNL
 - Addressed by sulfur tolerance studies at GM
- Tianjin University's role
 - Initial DFT calculations were performed at Tianjin University.
 - All calculations were repeated on larger MOx clusters at PNNL to get better accuracy.

Summary and conclusions

Project progress

- Catalysts prepared and tested
 - Catalysts prepared by incipient wetness showed highest activity.
- The active sites were determined by a combination of XPS, XAFS, FTIR and DFT
 - CeO₂ helps stabilize Mn in a higher oxidation state (Mn⁴⁺)
 - in addition, the Mn is also easier to reduce.
 - NO oxidation, XAFS results and DFT calculations show that Mn doping in the ceria lattice is not necessary.
 - XPS and XAFS suggest that the active sites are small MnO₂ clusters interacting strongly with CeO₂.
- The reaction mechanism was investigated by DFT and FTIR.
 - MnO_x-CeO₂ interaction leads to more labile oxygen which significantly lowers the temperature for the conversion of adsorbed nitrites to nitrates.
- Addition of ZrO₂ improves the hydrothermal stability and tolerance to sulfur
 - Activity can be partially restored after desulfation by a rich treatment

Remaining Barriers and Future Work

- Goal: Maximize activity and sulfur tolerance of MnO_x-CeO₂ for NO oxidation to enable the noble metal content of DOC and LNT catalysts to be reduced or eliminated.
 - Maximize the number of active sites (and their stability) which are small MnO₂ clusters interacting with CeO₂ (Mn₂O₄-CeO₂):
 - Investigate the effect of the support on the structure and activity of MnO₂/CeO₂.
 - Improve sulfur tolerance:
 - Effect of doping with Pd.
 - Effect of regeneration treatment on catalyst activity.

Publications and Presentations

Publications:

- LR Pederson, JH Kwak, D Mei, DR Herling, GG Muntean, CHF Peden, "Investigation of Mixed Oxide Catalysts for NO Oxidation", Advanced Combustion Engine Research and Development, FY2012 Progress Report (2012).
- AM Karim, LR Pederson, J Szanyi, Diana Tran JH Kwak, D Mei, GG Muntean, CHF Peden, "Investigation of Mixed Oxide Catalysts for NO Oxidation", Advanced Combustion Engine Research and Development, FY2013 Progress Report (2013) in press.
- Manuscript on the effect of exchange between NO and oxygen from the lattice is being prepared
- Manuscript on the NO oxidation reaction mechanism and active sites on MnOx-CeO₂ is in preparation.

Presentations:

- LR Pederson, JH Kwak, D Mei, DR Herling, GG Muntean, CHF Peden, "Investigation of Mixed Oxide Catalysts for NO Oxidation", Presented by Larry Pederson at the DOE Annual Merit Review, May 2012.
- LR Pederson, AM Karim, JH Kwak, D Mei, GG Muntean, CHF Peden, "Investigation of Mixed Oxide Catalysts for NO Oxidation", Presented by Larry Pederson at the DOE Annual Merit Review, May 2013.
- Karim et al. "Insights on the active phase and mechanism for NO oxidation on MnOx-CeO2 mixed oxide", invited talk at the annual ACS conference in San Francisco, CA, August 10-14 2014.
- Karim et al. "Insights on the active phase and mechanism for NO oxidation on MnOx-CeO2 mixed oxide", accepted for oral presentation at the 8th International Conference on Environmental Catalysis in Asheville, North Carolina Aug 24-27 2014.

Technical Back-Up Slides

Catalyst synthesis and BET surface area

Sample	Surface area(m²/g)					
	Fresh	After reaction	After aging			
HAS-CeO ₂ (GM)	139					
1%MnO _x /CeO ₂	145		106			
$3.4\% \mathrm{MnO_x/CeO_2}$	132		71			
6.9%MnO _x /CeO ₂	126	124.5	-			
14.3%MnO _x /CeO ₂	115	111.5	69			
30.7%MnO _x /CeO ₂	87	84.7	51			

- GM: synthesized by co-precipitation method
 - \blacksquare CeO₂, MnO_x, Mn-CeO_x (Mn/(Mn+Ce) = 0.04-0.3)
- PNNL
 - Incipient wetness method
 - Support: high surface area CeO₂ (from GM S.A. = ~ 120m2/g)
 - Citrate (co-impregnation)
 - Combustion synthesis
 - MnO_x loading: 3.4, 6.9, 14.3, 30.7 wt%

- ✓ PNNL catalysts shows high surface area due to the initial high surface area CeO₂.
- ✓ Negligible surface area reduction after reaction tests for both GM and PNNL catalysts.
- ✓ Aging leads to 30-40% loss in surface area.

Effect of synthesis method on catalyst activity

Co-precipitation (citrate) or combustion methods of catalyst preparation didn't show an advantage over incipient wetness.

INTEGRATED
CATALYSIS

Pacific Northwest

Oxygen Activation on Defective Surfaces

Generally, molecular oxygen adsorption and activation over defective (two defect sites) surfaces are thermodynamically favored.

NO₂ reduction on the defective surfaces

- With existing oxygen defects, the adsorbed NO₂ will reduce to NO and O on the CeO₂-x and the Mn doped CeO₂-x surfaces.
- It is thermodynamically unfavorable for the adsorbed NO_2 to decompose into NO and O on the $MnO_2(110)$ and the $CeO_2(111)$ supported Mn_2O_4 cluster.

